Chapter 8: Building a simple social network

  • Redis in Action – Home
  • Foreword
  • Preface
  • Part 1: Getting Started
  • Part 2: Core concepts
  • 1.3.1 Voting on articles
  • 1.3.2 Posting and fetching articles
  • 1.3.3 Grouping articles
  • 4.2.1 Configuring Redis for replication
  • 4.2.2 Redis replication startup process
  • 4.2.3 Master/slave chains
  • 4.2.4 Verifying disk writes
  • 5.1 Logging to Redis
  • 5.2 Counters and statistics
  • 5.3 IP-to-city and -country lookup
  • 5.4 Service discovery and configuration
  • 5.1.1 Recent logs
  • 5.1.2 Common logs
  • 5.2.2 Storing statistics in Redis
  • 5.3.1 Loading the location tables
  • 5.3.2 Looking up cities
  • 5.4.1 Using Redis to store configuration information
  • 5.4.2 One Redis server per application component
  • 5.4.3 Automatic Redis connection management
  • 8.1.1 User information
  • 8.1.2 Status messages
  • 9.1.1 The ziplist representation
  • 9.1.2 The intset encoding for SETs
  • Chapter 11: Scripting Redis with Lua
  • 11.1.1 Loading Lua scripts into Redis
  • 11.1.2 Creating a new status message
  • 11.2 Rewriting locks and semaphores with Lua
  • 11.3 Doing away with WATCH/MULTI/EXEC
  • 11.4 Sharding LISTs with Lua
  • 11.5 Summary
  • 11.2.1 Why locks in Lua?
  • 11.2.2 Rewriting our lock
  • 11.2.3 Counting semaphores in Lua
  • 11.4.1 Structuring a sharded LIST
  • 11.4.2 Pushing items onto the sharded LIST
  • 11.4.4 Performing blocking pops from the sharded LIST
  • A.1 Installation on Debian or Ubuntu Linux
  • A.2 Installing on OS X
  • B.1 Forums for help
  • B.4 Data visualization and recording
  • Buy the paperback
  • Redis in Action – Home
  • Foreword
  • Preface
  • Part 1: Getting Started
  • Part 2: Core concepts
  • 1.3.1 Voting on articles
  • 1.3.2 Posting and fetching articles
  • 1.3.3 Grouping articles
  • 4.2.1 Configuring Redis for replication
  • 4.2.2 Redis replication startup process
  • 4.2.3 Master/slave chains
  • 4.2.4 Verifying disk writes
  • 5.1 Logging to Redis
  • 5.2 Counters and statistics
  • 5.3 IP-to-city and -country lookup
  • 5.4 Service discovery and configuration
  • 5.1.1 Recent logs
  • 5.1.2 Common logs
  • 5.2.2 Storing statistics in Redis
  • 5.3.1 Loading the location tables
  • 5.3.2 Looking up cities
  • 5.4.1 Using Redis to store configuration information
  • 5.4.2 One Redis server per application component
  • 5.4.3 Automatic Redis connection management
  • 8.1.1 User information
  • 8.1.2 Status messages
  • 9.1.1 The ziplist representation
  • 9.1.2 The intset encoding for SETs
  • Chapter 11: Scripting Redis with Lua
  • 11.1.1 Loading Lua scripts into Redis
  • 11.1.2 Creating a new status message
  • 11.2 Rewriting locks and semaphores with Lua
  • 11.3 Doing away with WATCH/MULTI/EXEC
  • 11.4 Sharding LISTs with Lua
  • 11.5 Summary
  • 11.2.1 Why locks in Lua?
  • 11.2.2 Rewriting our lock
  • 11.2.3 Counting semaphores in Lua
  • 11.4.1 Structuring a sharded LIST
  • 11.4.2 Pushing items onto the sharded LIST
  • 11.4.4 Performing blocking pops from the sharded LIST
  • A.1 Installation on Debian or Ubuntu Linux
  • A.2 Installing on OS X
  • B.1 Forums for help
  • B.4 Data visualization and recording
  • Buy the paperback

    Chapter 8: Building a simple social network

    This chapter covers

    • Users and statuses
    • Home timeline
    • Followers/following lists
    • Posting or deleting a status update
    • Streaming API

    In this chapter, we’ll cover the data structures and concepts necessary to build a system that offers almost all of the back-end-level functionality of Twitter. This chapter isn’t intended to allow you to build a site that scales to the extent of Twitter, but the methods that we cover should give you a much better understanding of how social networking sites can be built from simple structures and data.

    We’ll begin this chapter by talking about user and status objects, which are the basis of almost all of the information in our application. From there, we’ll discuss the home timeline and followers/following lists, which are sequences of status messages or users. Continuing on, we’ll work through posting status messages, following/unfollowing someone, and deleting posts, which involves manipulating those lists. Finally, we’ll build out a fully functioning streaming API with web server to encourage users of the social network to use and play with the data.

    In the last chapter, we spent much of our time building an ad-targeting engine that combined user-entered data (the ads and their prices) with click behavior data in order to optimize ad earnings. The ad-targeting engine was query-intensive, in that every request could cause a lot of computation. In this Twitter-like platform, we’ll do our best to perform as little work as possible when someone is interested in viewing a page.

    To get started, let’s build the basic structures that will hold much of the data that our users are interested in.