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How to develop a simple  
recommendations engine using Redis
Recommendation systems need not always involve complex machine-learning techniques. With enough data on hand, one 
can develop recommendation systems with little effort. One of the simplest recommendation systems is a look-up table 
based on user-indicated profile settings. When you have data on many users and their behavior, collaborative filtering is 
an easy solution for implementing recommendations. For example, in an e-commerce solution you could use collaborative 
filtering to determine which users that purchased a sleeping bag have also purchased a flashlight, lantern and bug repel-
lent. Content-based recommendation systems go a step further and incorporate greater sophistication in predicting what a 
user is likely to want, based on that user’s interactions. This article demonstrates how to develop simple recommendation 
systems in Redis based on user-indicated interests and collaborative filtering.

What is Redis?
Redis is an in-memory, NoSQL data structures store, frequently used as a database, cache, and message broker. Unlike other 
in-memory stores, it can persist your data to disk, and can accommodate a wide variety of data structures (Sets, Sorted Sets, 
Hashes, Lists, Strings, Bit Arrays, HyperLogLogs, Geospatial Indexes). Redis commands enable developers to execute highly 
performant operations on these structures with very little complexity. In other words, Redis is built for high performance 
and simplicity.

Redis Enterprise enhances Redis with seamless scaling, always-on availability, automated deployment and the ability to use 
cost-effective Flash memory as a RAM extender so that large dataset processing can be accomplished cost-effectively.

Data Structures in Redis
Data structures are like “Lego” building blocks, helping developers achieve specific functionality with the least amount of 
complexity, least overhead on the network and minimal latency, with operations executed extremely efficiently in memory 
(right next to where the data is stored).

Data structures set Redis apart from other key/value stores and NoSQLs in terms of versatility and flexibility. Redis data 
structures include:

• Strings

• Hashes

• Lists

• Sets

• Sorted sets

• Bit Arrays

• HyperLogLog

• Geospatial Indexes

What is a Recommendation Engine?
A recommendation engine is an application or a microservice that presents the user with the choices they are most likely to 
make next. Recommendations could include a music track that the user is likely to want to hear next, a list of movies that 
they might want to watch next, or another action that they may choose to take after completing a reservation.

At a system level, recommendation engines match users with items that they are most likely to be interested in. By pushing 
relevant personalized recommendations to users, applications can encourage users to purchase relevant items, increase 
their time spent on a site or in the app, or click on the right ads—ultimately helping to maximize revenues, usage or eyeballs.
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Effective recommendation engines should do the following:

1. Generate the correct and relevant choices for their users (this usually depends on the selected algorithm)

2. Provide high performance, with choices presented to users in real time

3. Be efficient with system resources (as with any well-written application)

Common Types of Recommendation Engines
The most common recommendation engines are based on user-indicated profile settings, collaborative filtering, and con-
tent-based recommendations. 

Recommendations based on user-indicated profile settings are the simplest to implement. However, they are static; they 
don’t take into account user behavior or try to understand what’s being recommended.

Collaborative filtering works well when you have many users and have collected enough information to understand and cat-
egorize your users based on their behavior. Collaborative filtering is quite effective and can generate surprisingly interesting 
results, but, alternatively, can be computationally heavy.

Content-based recommendations rely on machine learning and understanding many dimensions of user attributes as well 
as the attributes of the items that are being recommended. Preparing the right data model is often tricky and a very lengthy 
process. However, with the right data model, content-based recommendations can serve great results with little historical 
data or fewer users in the system.

Redis Data Structures and Commands for Recommendations
Redis data structures can reduce application complexity tremendously while delivering very high performance at large scale. 
Recommendation solutions often need Set operations such as intersection, union, and set difference to be executed very 
quickly. Redis data structures such as Strings, Sets, and Sorted Sets come in very handy while implementing a recommen-
dation solution. Also, being an in-memory database platform, Redis delivers very high throughput with sub-millisecond 
latency, using the fewest computational resources. 

Before we begin setting up the recommendation system, let’s get acquainted with some of the Redis data structures and 
their commands:

Data Structure Command Description
Strings

GET key Get the value of the key

SET key value Set key to hold the string value.

Sets
SADD key member [member …] Add one or more members to a set

SCARD key Get the number of members in a set

SDIFF key [key …] Subtract multiple sets

SDIFFSTORE destination key [key
…]

Subtract multiple sets and store the resulting set 
in a key

SINTER key [key …] Intersect multiple sets

SINTERSTORE destination key [key
…]

Intersect multiple sets and store the resulting set 
in a key
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Data Structure Command Description
SISMEMBER key member Determine if a given value is a member of a set

SMEMBERS key Get all the members of a set

SREM key member [member …] Remove one or more members from a set

SUNION key [key …] Add multiple sets

SUNIONSTORE destination key [key
…]

Add multiple sets and store the resulting set in 
a key

SSCAN key cursor Incrementally iterate Set elements

Sorted Sets
ZADD key score member [score mem-
ber…]

Add one or more members to a sorted set, or 
update its score if  it already exists

ZCARD key Get the number of members in a sorted set

ZCOUNT key min max Count the members in a sorted set with scores 
within the given values

ZINCRBY key increment member Increment the score of a member in a sorted set

ZINTERSTORE destination numkeys
key [key …]

Intersect multiple sorted sets and store the 
resulting set in a key

ZRANGE key start stop [WITH-
SCORES]

Return a range of members in a sorted set by 
index

ZRANGEBYSCORE key min max [WITH-
SCORES]

Return a range of members in a sorted set by 
scores

ZRANK key member Determine the index of a member in a sorted set

ZREM key member [member …] Remove one or more members from a sorted set

ZREVRANGE key start stop [WITH-
SCORES]

Return a range of members in a sorted set by 
index with scores ordered from high to low

ZREVRANGEBYSCORE key max min
[WITHSCORES]

Return a range of members in a sorted set by 
score with scores ordered from high to low

ZREVRANK key member Determine the index of a member in a sorted set 
with scores ordered from high to low

ZSCORE key member Get the score associated with the given member 
in a sorted set

ZUNIONSTORE destination numkeys
key [key …]

Add multiple sorted sets and store the resulting 
set in a new key

ZSCAN key cursor Incrementally iterate sorted set elements and 
associated scores
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Recommendations Based on User Interests
This is a bare bones recommendation system based on the user-defined preferences. In this method, we let the users select 
the categories they are interested in. We also classify items by their categories. Then we match users to the items based on 
the selected categories.

The algorithm:

1. Find all the categories a user U is interested in. Let’s call the set “user:U:categories.”

2. Get all the items associated with user:U:categories.

Step 1
Set categories each user is interested in:

SADD user:<user id>:categories <category>

Step 2
Maintain a set for each category such that the set contains all the items in that category:

SADD category:<category>:items <item id>

Step 3
Get all the categories a user is interested in (assuming this is a small set; use SSCAN for a large dataset):

SMEMBERS user:<user id>:categories

Step 4
Get all the items that belong to the categories the user is interested in:

SUNION category:<category 1>:items category:<category 2>:items category:<category 

3>:items …

For large data sets it’s a good idea to use SUNIONSTORE. 

Sample Scenario: The local grocery store’s mobile app for recommendations 
The local grocery shop has just released a new mobile application that allows its customers to select the product categories 
they are interested in. The backend of the application tracks all the products on sale for each category. When a customer 
walks in to the store and opens the application, that customer will receive personalized, targeted coupons. The data struc-
tures in this example are:

categories = {organic, dairy,… }

category:organic:items = {milk, carrots, tomatoes, …}

category:dairy:items = {milk, butter, cheese, …}

user:U1:categories = {organic, dairy}

user:U2:categories = {dairy}

When user U1 opens her application, she will receive promotions related to the following items: 

SUNION category:organic:items category:dairy:items 

This results in {milk, carrots, tomatoes, butter, cheese, …}
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Collaborative Filtering Based on User-item Associations
In this approach, we tap into the user behavior and make recommendations based on the actions made by other users with 
similar behavior. 

The algorithm:
1. Find other users (U1, U2, U3…) who are associated with the same set of items as user U

2. Get all the items associated with users U1, U2, U3…

3. Remove the items that are already associated with U, so that only the non-associated items are recommended to U

Step 1
Maintain a set of all items associated with a user, e.g. items they’ve purchased via the e-commerce application:

SADD user:<user id>:items <item id>

Step 2
For each user-to-item association, maintain a reverse mapping of items-to-users:

SADD item:<item id>:users <count> <user id>

Step 3
Get all the items associated with the user (assuming this is a small set; use SSCAN for a large dataset):

SMEMBERS user:<user id>:items

Step 4
Get all the users that belong to the categories that the user is interested in:

SUNION item:<item id 1>:users items:<item id 2>:users items:<item id 3>:users …

Step 5
Get all the items that belong to the categories the user is interested in:

SUNIONSTORE user:<user id>:all_recommended user:<user id 1>:items user:<user id 

2>:items user:<user id 3>:items …

The final set computed above will contain all the items associated with other users who have the same item associations.

Step 6
Get the list of items that aren’t yet associated with the user, but are associated with the other users with similar behavior:

SDIFF user:<user id>:all_recommended user:<user id>:items 
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Sample Scenario Continued: Adding Peer Activity to the Mobile App 
The concept of personalized promotions by the local grocery store becomes a grand success. The store then decides to 
improve the app by promoting things based on peer behavior. The store wants to tell the customers, “The customers who 
purchased X also purchased Y.” The data structures for this example would look like:

userid:U1:items = {milk, bananas} 

userid:U2:items = {milk, carrots, bananas}

userid:U3:items = {milk}

item:milk:users = {U1, U2, U3}

item:bananas:users = {U1, U2}

item:carrots:users = {U2}

What items should we recommend to U1?

SMEMBERS user:U1:items 

= {milk, banana}

SUNION item:milk:users items:banana:users

= {U1, U2, U3}

SUNIONSTORE user:U1:all_recommended user:U1:items user:U2:items user:U3:items

= {milk, bananas, carrots}

SDIFF user:U1:all_recommended user:U1:items

= {milk, bananas, carrots} - {milk, bananas}

= {carrots}

The grocery store will recommend carrots to U1.

Collaborative Filtering Based on User-item  
Associations and their Ratings
This approach not only computes the common behavior based on the same set of items associated with different users, but 
also on how each user rates those items.  This technique finds all the users who have rated items similarly to user U and, 
then recommends as-of-yet unpurchased items based on the items rated by users exhibiting similar behavior.

The algorithm:
1. Find all other users that rated at least one (or N) item also rated by user U, and use them as candidates.

2. Score each candidate using the root mean square (RMS) of the differences between their ratings of the same items.

3. Store the top similar users for each individual user.
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Find the top recommended item:
1. Find all the items that were rated by users whose ratings are similar to user U but have not yet been rated by user U.

2. Calculate the average rating for each item.

3. Store the top items.

Step 1: Insert Rating Events 
Maintain a Sorted Set for each user to store all the items rated by that user:

ZADD user:<user id>:items <rating> <item id>

Maintain a Sorted Set for each item and track all the users who rated that item, as well as the rating they gave it:

ZADD item:<item id>:scores <rating> <user id>

Step 2: Get Candidates with the Same Item Ratings
First fetch all the users who have rated same items: 

ZRANGE user:<user id>:items 0 -1

Then determine how similar those users are to user U, to whom we need to make recommendations:

ZUNIONSTORE user:<user id>:same_items 3 item:I1:scores item:I2:scores item:I3:scores

Step 3: Calculate Similarity for Each Candidate
Find the difference between <user id> and others in the list using ZMEMBERS (use ZSCAN for large datasets):

ZRANGE user:<user id>:same_items 0 -1

ZINTERSTORE rms:<user id1>:<user id2> 2 user:<user id1>:items user:<user id2>:items 

WEIGHTS 1 -1

The absolute value gives the root mean square between two users. After this step, implement your own logic to identify 
who is close enough to a given user based on the root mean square between the users.

Step 4: Getting the Candidate Items
Now that we have a sorted set of users similar to U1, we can extract the items associated with those users and their ratings. 
We’ll do this using ZUNIONSTORE with all U1’s similar users, but then we need to make sure we exclude all the items U1 
has already rated.

We’ll use weights again, this time with the AGGREGATE option and ZRANGEBYSCORE command. Multiplying U1’s items 
by -1 and all the others by 1, and specifying the AGGREGATE MIN option will yield a sorted set that is easy to cut: all U1’s 
item scores will be negative, while the other user’s item scores will be positive. With ZRANGEBYSCORE, we can fetch the 
items with a score greater than 0, returning only those items that U1 has not rated.

Assuming <user id 1> with similar users <user id 3>, <user id 5>, <user id 6>:

ZUNIONSTORE recommendations:<user id 1> 4 user:<user id 1>:items user:<user id 

3>:items user:<user id 5>:items user:<user id 6>:items WEIGHTS -1 1 1 1 AGGREGATE MIN
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Sample Scenario Continued: Using Peer Ratings to Improve Recommendations
The grocery chain now decides to add another feature that allows users to rate items from 1 to 5. The customers who 
purchase similar items and rate in a similar fashion would now be clubbed closer as the store starts promoting items not just 
based on other users’ purchasing behavior, but also on how they rate the items.

The data structures would look like:

userid:U1:items = {(milk, 4), (bananas, 5)} 

userid:U2:items = {(milk, 3), (carrots, 4), (bananas, 5)}

userid:U3:items = {(milk, 5)}

item:milk:scores = {(U1, 4), (U2, 3), (U3, 5)}

item:bananas:scores = {(U1, 5), (U2, 5)}

item:carrots:scores = {(U2, 4)}

ZRANGE user:U1:items 0 -1

= {(milk, 4), (bananas, 5)}

ZUNIONSTORE user:U1:same_items 2 item:milk:scores item:bananas:scores

user:U1:same_items = {(U1, 9), (U2, 8), (U3, 5)}

ZINTERSTORE rms:U1:U2 2 user:U1:items user:U2:items WEIGHTS 1 -1

ZINTERSTORE rms:U1:U3 2 user:U1:items user:U3:items WEIGHTS 1 -1

rms:U1:U2 = {(bananas, 0), (milk, 1)}; 

rms:U1:U3 = {(milk, -1)}; 

Root Mean Square (RMS) of rms:U1:U2 = 0.7

RMS of rms:U1:U3 = 1

From the above calculation, we can conclude that U2 is closer to U1 than U3 is to U1. However, for our calculations, we will 
choose RMS values less than or equal to 1. Therefore, we will consider the ratings of both U2 and U3:

ZUNIONSTORE recommendations:U1 3 user:U1:items user:U2:items user:U3:items WEIGHTS -1 

1 1  AGGREGATE MIN

recommendations:U1 = {(bananas, -5), (milk, -4), (carrots, 4)}

The item that has the highest score is recommended to U1. In our example, the store recommends carrots to U1. 
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Advanced Recommendations
Collaborative filtering is a good technique when you have a large dataset pertaining to user behavior. Collaborative filtering 
is generic, and doesn’t take into consideration the content of the items being recommended. This technique works fine 
when many users share common interests. Content-based recommendations, on the other hand, are tedious. They are most 
effective when incorporating predictive analytics and machine learning techniques. Redis-ML offers categorizing techniques 
using tree ensembles such as Random Forest. 

The pseudo-code below illustrates how we can use Redis-ML module for recommendations. The code assumes you have 
already generated a model on Apache Spark and loaded the model into Redis.  Apache Spark provides you the necessary 
tools to create and train a Machine Learning (ML) module. When you load an Apache Spark ML model into Redis, the 
Redis-ML module automatically translates the Spark ML model into Redis data structures and makes it available for serving 
immediately.

The code below will do the following:

1. Get the user profile from Redis.

2. Fetch the user’s interest categories. We can allow the user to select the categories they are interested in, or compute the
categories based on their purchase history, or both.

3. Retrieve all the items that belong to the interested categories.

4. For each item, calculate the score in the Random Forest classifier (RedisRandomForestClassfy).

5. Sort the items based on the rating, and recommend the highest item with the highest rating.

void setRecommendationsByInterests(String userid){ 

// Sample data: "age:31", "sex:male", "food_1:pizza", "food_2:sriracha" 

String[] featureVector = redis.call("hget", userid+":profile"); 

Category[] userInterestCategories = redis.call("smembers", 

"interest_categories:"+userid); 

// For each category we have a machine learning model that will recommend 

// the most suitable items according to the users feature vector. 

// The models are trained on Spark and stored on Redis ML. 

for(category in userInterestCategories){ 

// Get all items of this category  

String[] items = redis.call("smembers", "item_to_categories:"+category); 

// for each category get a score from the random forest classifier 

for(item in items){ 

category.itemScores[item] = 

RedisRandomForestClassify(forestId = 

"category:item:"+item, featureVector) 

} 
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// Sort the classification results and get the top  

// results to render recommendations  

results[category] = category.itemScores.sort()[0:n_items] 

// add recommended items for this user under each category 

redis.call("sadd","reco_items_by_category:" 

+category+":user:"+userid, results[category]);

} 

}

For more information about Redis-ML, visit https://redis.com/community/redis-modules-hub/.

Optimizing Recommendations for 
Real-time Serving in Production
The Set and Sorted Set operations take time and resources, especially with a large dataset. For real-time recommendations, 
all we need is the final product: a Set or a Sorted Set of recommended items for each user. As a high-performance, low-la-
tency in-memory data store, Redis can usually perform all the computation required for recommendations. However, we 
recommend that you prepare the final recommended product in advance for each user in order to (1) deliver recommenda-
tions with sub-millisecond latency and (2) make the solution resource-efficient. All the temporary Sets and Sorted Sets used 
for computations could be discarded once a final recommendation Set is generation for a user.

Should recommendations be created as a batch job, or as an on-going process while users update their profiles or activity? 
This really depends on numerous factors, such as how frequently users access an application, how frequently their behavior 
changes, volume of transactions and business goals. For example, if the solution designer is creating recommendations in 
a retirement planning application (one used infrequently by users), it may not matter if recommendations are updated in 
real-time. On the other hand, if the solution designer is creating recommendations for day traders, the recommendations 
need to best reflect market conditions to be useful. Solutions designers must study their data, the user behavior, the recom-
mendation goals, etc. to choose the right level of responsiveness. 

https://redis.com/community/redis-modules-hub/?utm_source=pdf-requickguide-wp201709&utm_medium=referral
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