
© 2022 Redis

The Game
Developer’s Guide
to Matchmaking
Matchmaking with Redis Enterprise on AWS

E-Book

VOLKAN CIVELEK | INDUSTRY SOLUTIONS ARCHITECT @ REDIS

Table of
Contents

Introduction . 3

What is matchmaking? . 4

Data requirements of matchmaking 5

Integration with AWS . 12

Summary . 14

Next steps . 15

22

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

Introduction

33

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

When you Google “screen time,” the majority of
the results that come up are related to parenting
and how to limit screen time for kids. But anxious
parents aren’t the only people obsessing over
screen time. Both the gaming and media industries
think about screen time a lot—mainly, how to
maximize the screen time of their active users.
These companies are competing for end-users’
valuable attention. The more consumer screen
time they win, the more revenue they earn. And
the gaming industry has pulled ahead in this
competition—its annual revenue surpasses that of
the movie and music industries combined.

While elements such as gameplay, storyline, and
design are all undoubtedly important elements
of a successful game, user engagement is just as
critical. Unlike consumable media such as movies
and TV shows, gamers become active participants
of the game experience, and they often are very
social with other players on the gaming platform.

This increased engagement creates a snowball
effect, as players discuss the game with their peers,
create online buzz, and attract more players to
join. And all this excitement leads to better player
retention, more monthly active users (MAUs), a
stronger gamer community, and increased revenue.

In the world of gaming, however, higher
engagement requires real-time interactions.
Real-time performance is what gamers expect—
anything less will see them drop the game and
move on to other games that can deliver it.
Because real-time performance is so critical
to gaming, Redis Enterprise and AWS have
become the database and cloud platform of
choice for game developers for such use cases
as matchmaking, leaderboards, personalization,
session management, and content caching.

Let’s dive deeper into one of those key real-time
gaming use cases: matchmaking.

Matchmaking is akin to leaderboards. Leaderboards
track player progress and to encourage them to
keep playing. Matchmaking can also encourage
players to keep playing, as it provides them with a
sense of accomplishment and the urge to compete
against higher-ranked gamers.

Designing an effective matchmaking strategy,
programmatically, requires developers to address
several technical issues. Game developers strive to
match players based on these three factors:

1. Latency
Latency and ping are the two terms players use to
describe the gaming experience in performance terms.
In multiplayer games, the geographic region from
which the player joins the game is the primary factor
that contributes to latency. That is because connecting
to a server in a different region isn’t ideal for online
gaming. If a player in the United States connects to a
server in Europe, the data sent between them travels
a large distance. This takes time, causing a lot of delay
and resulting in high ping—the last thing you want in
gaming. Ensuring gamers are playing on geographically-
close servers is crucial to improving latency.

2. Preference / skill level
Skill-based matchmaking (SBMM) has always been a
hot topic among gamers. SBMM works by trying to
match players together who are at a similar skill level,
with the goal of keeping games fair and competitive.

Game developers use techniques to periodically
calculate the percentiles of players’ skill levels to
minimize wait times.

But the way skill level is determined differs from game
to game. Games such as “Call of Duty” and “League
of Legends” have skill rank queues. However, in other
games, a player’s level isn’t necessarily a depiction
of their skill but rather how much time they have
invested in the game.

3. Wait time
The concept of matchmaking is not only in gaming but
in dating. It’s also known in the business world, such as
in B2B matchmaking or investor matchmaking. There
is one significant difference. In gaming, matchmaking
needs to happen within seconds.

A short wait time is as important as compatibility
when it comes to game matchmaking. Although
it’s dependent upon complex rules among many
players, matchmaking must happen instantly.

It’s not always possible for all three of these
matchmaking factors to have equal priority. For
example, if a player has been waiting longer than
what the game deems reasonable, the other two
factors (location and skill level) get less priority. This
means a player may end up playing with people
outside their skill level or on a distant server, which
causes the game to lag.

What is
matchmaking?

Matchmaking is the
process of connecting
players for online
play sessions. It is an
important gaming
element, as matchmaking
can ensure that players
are paired with others of a
similar skill level, located
in close proximity, or with
similar interests.

44

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

Data
requirements of
matchmaking

The data layer of a function needs to be diligently articulated from ground up so that it can serve up the
data to its performance requirements such as real time and high availability. Matchmaking functionality
has specific performance, scalability, and availability requirements. Failing on these requirements not only
jeopardizes success of the matchmaking functionality but endangers the entire game itself. Let’s visit the data
requirements of matchmaking in more detail.

Real-time database
In order for humans to perceive an experience as instantaneous, it must occur in 100 milliseconds or less.

In a client/server world, data does not come right back to us directly from the database. Rather, it’s
processed and travels through servers. Network time itself can easily take up to 50ms and servers can take
up another 50ms. This leaves the database response time somewhere between 0ms and 1ms in order to
produce an experience perceived by gamers as instantaneous. So to drive down from the requirements, a
real-time database should serve up the data in 1ms or less.

For decades, the answer
to “How do I manage
data?” was “a relational
database.” However, a
one-size-fits-all database
doesn’t fit anymore.
Gaming developers need
to select the best tool to
solve the problem – and
for this problem, relational
databases are no longer
the best answer.

55

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

Instant response time? Sure. Redis Enterprise typically runs in RAM. It delivers
extremely high performance: benchmarked at more than 1.5 million operations per
second at under 1ms latency on one modest AWS EC2 instance.

Humans

Apps

Machines

App Servers
1 ms

50 ms

50 ms

100 ms

High concurrency
In game matchmaking, a ticket usually means a join request to play a game.. Every submitted ticket is enriched
with the player’s data and graph relationships from the database. In addition to these queries, the player’s data is
constantly updated with scores, ranks, and percentiles.

Join requests exponentially increase during peak hours. A database needs to be highly concurrent and conflict-
free to support this level of read and write operations. Industry economics requires that this performance is
delivered in the most cost-effective manner.

Global availability
It’s not enough for a gaming matchmaking service to be fast. It also needs to be reliably available whenever
(and wherever) the players are online, which means the database also needs high availability while running
on a global scale. Specifically, every region requires its own rules to optimize its own regional matchmaking.

As a Plan B to reduce gaming wait times, developers may choose to matchmake across geographical regions
if the gamer’s preferences allow for it. Larger player pools permit quicker matching and shorter wait times. In
these circumstances, a conflict-free, geo-replicated database is a must.

Will it scale? Linearly.
Redis Enterprise is
benchmarked at 50
million ops/second
under 1 millisecond, in as
little as 26 EC2 nodes.

Play anywhere,
at top speed
With Redis Enterprise
Active-Active Geo-
Distribution, you can
have a database spread
across multiple regions.
All replicas are writable
and all replicas are
consistent via Conflict-
Free Replicated Data
Type (CRDT) technology.
Active-Active provides
99.999% (five-nines)
availability, which means
about five minutes of
downtime in a year.

66

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

East Coast gamer to
be matched

US WEST US EAST

https://redis.com/docs/linear-scaling-benchmark-50m-ops-sec/
https://redis.com/blog/diving-into-crdts/

Rich data model support
There are cascading levels of technical complexity in game development. Key factors of complexity are
the way players interact with each other, the hours they play, and any unexpected spikes in demand.
Yet despite this complexity, it is vital to serve games at real-time speeds. All of this makes data modeling
of utmost importance for gaming. Storing gamers’ profiles, with all their interactions with the game itself
and also with other gamers, requires rich data modeling so that the application can perform ultra-fast
reads and writes.

Right data model for
the right use case
At its core, Redis
supports popular data
types, such as list, set,
sorted set, and hashes.
This is extremely useful
to many features
in gaming, such as
leaderboards.
Implementing
leaderboards is as easy
as issuing the ZINCRBY
command to increment
the score of any player—
all the data kept ordered
in memory by default,
no full table scans
required to retrieve
it. Issuing a ZRANGE
command will suffice o
read the ordered data
in O(log(N)+M) time, N
being the number of
elements in the sorted
set and M the number
of elements returned.

ENTERPRISE

Streams
(x500)

Graphs
(x200)

Time Series
(x4 - x100)

Search
(x4 - x100)

Feature Store
(x14 - x100)

Key-Value & Data Structures
(x7 - x50)

JSON
(x10)

Bloom
(x17)

On top of the native data structures, Redis
Enterprise also supports:

� RedisJSON to store user profiles and
access them fast.

� RediSearch, a module for querying,
secondary indexing, and full-text search.

� RedisTimeSeries to add time series data
structure to Redis.

� Redis Streams, to enable asynchronous,
event-based data enrichment and
queuing to Redis.

� RedisGraph, which is the full
implementation of a property graph
database with Redis.

And with every module, the performance
difference against other common alternatives
is measured in orders of magnitude.

77

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

https://redis.io/commands/zincrby/
https://redis.io/commands/zrange/

Rich query language / search
Game matchmaking is based on a number of rules such as geo-proximity, matchmaking rating (MMR),
skills percentile difference, and/or applying user preferences such as custom blacklists. All these rules
require an efficient way to query the database in order to satisfy fast matchmaking.

Game matchmaking
in action: a RediSearch
example
The RediSearch
module includes a
query language that can
perform text searches
as well as complex
structured queries on
top of Redis Enterprise’s
set of commands.

Let’s explore some of
the search commands
in action below. These
commands are queries
against the Redis
Enterprise database
that can be used in a
matchmaking solution.

// Find the closest network edge POP to the player

FT.AGGREGATE cities * LOAD 2 city location

 APPLY geodistance(@location, 134.811767,51.6716705) AS dist

 SORTBY 2 @dist ASC LIMIT 0 1

// Find players on closest server

FT.SEARCH Game-x @pop:Miami LIMIT 0 4 RETURN 3 gamer_id mmr pop

// Find players on the closest server within +/- 2.5% of MMR

FT.SEARCH Game-x @pop:Miami @mmr:[2731 2872]

// Closest players within +/- 2.5% of MMR who are not blacklisted

FT.SEARCH Game-x @pop:Miami @mmr:[2731 2872]

 -@gamer_id:(2112|4343)

// Match people in my groups with a similar play style

…

~@group_tags:{thistle_community|olive_club}

~@play_style_tags:{med_mobile|sprayer}

88

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

Streaming commands:
An example
Redis Enterprise is well
known for its speed. On
top of that, with specific
streaming commands
such as XACK and
XAUTOCLAIM, it’s easy to
develop a reliable, exactly-
once consumer function.
For concurrent stream
processing, XGROUP
CREATECONSUMER is
the command to use.

Streams
We mentioned tickets, and defined them as a request to play a game. But where do we submit these requests?

There needs to be a mechanism when a gamer submits a ticket, and “matchmaker” is triggered. Since a
player can submit a ticket anytime, this mechanism is called a stream.

For effective matchmaking, the stream needs to be:
• Fast: The stream’s consumers should not fall behind the pace of the ticket production.
• Reliable: The stream consumers need to recover from failures. They cannot reprocess what has been processed,

nor leave behind an unprocessed ticket. In other words, the code should consume the tickets exactly once.
• Concurrent: Gaming companies host multiple games and the popularity of these games differ. The

streaming mechanism needs to effectively allocate streaming resources for all the available games and
seamlessly scale when needed.

Let’s examine some of the streaming commands in action below:

// Create the stream and consumer groups

XGROUP CREATE tickets tickets-group $ MKSTREAM

XGROUP CREATECONSUMER tickets tickets-group worker-1

XGROUP CREATECONSUMER tickets tickets-group worker-2

// Almost always use * to indicate auto generation

XADD tickets 10-0 game_name “Game-X” gamer_id 1

XADD tickets 20-0 game_name “Game-Y” gamer_id 2

XADD tickets 30-0 game_name “Game-Z” gamer_id 3

99

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

https://redis.io/commands/?group=stream

//worker-1 reads the message 10-0 and acknowledges it

XREADGROUP GROUP tickets-group worker-1 COUNT 1 STREAMS tickets >

XACK tickets tickets-group 10-0

// Claim any messages that have been pending longer than 10 seconds

XAUTOCLAIM tickets tickets-group worker-2 10000 0-0

// Monitor the groups and the consumers

XINFO GROUPS tickets

XINFO CONSUMERS tickets tickets-group

// Redis keeps track of what the last delivered message to a stream group is

If you want to store JSON in a stream, you’ll need to stringify it first like below:

const ticket = JSON.stringify({

 “game_name”: “GAME-x”,

 “gamer_id”: “RANDINT”,

 “network”: {

 “ip”: “1.2.3.4”,

 “platform”: “iOS”,

 “ping”: “5.4”,

 “enabled”: True

 },

1010

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

 “location”:{

 “pop”: “Cary”,

 “coordinates”: “35.7915,78.7811”

 },

 “pref_override”: {

 “level”: “easy”,

 “max_wait”: 120,

 “blacklist_tags” : []

 }

})

Then you can add it to the stream.

XADD tickets * json ticket

1111

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

Integration with
Amazon Web
Services

Redis Enterprise meets gamers wherever they are, with support for multi-cloud and hybrid cloud
deployment models, including on AWS.

The architecture below depicts the matchmaking functionality of a multiplayer game on AWS.

1212

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

Amazon
CloudFront Tickets

Primary DB

Ready to play

Player 1

Player 2

Amazon
API Gateway

AWS Lamda
Backend

Matchmaker

Game
starter

Amazon
GameLift

Amazon
Cognito

ENTERPRISE

ENTERPRISE

ENTERPRISE1 2

6 3

4

5

7
Game

Servers

Amazon CloudFront is used as a global CDN to serve
static content globally. In this example, Amazon
Cognito is used for identity and Amazon API Gateway
is the global load balancer to distribute traffic withi
a region and between regions. Once Amazon API
Gateway invokes the AWS Lambda for a ticket request:

1 . The AWS Lambda function acts as a producer. It
adds the join request to the “Tickets” stream.

2 . The matchmaker Lambda function continuously pulls
the “Tickets” stream and enriches the join requests
by pulling user data from the primary database.

3 . The system establishes a match, based on the
rules and user preferences. Then the matchmaker
Lambda function adds a message to the “Ready
to play” stream.

4 . “Game starter” Lambda function consumes these
messages and consults Amazon GameLift for a
server assignment. Once it gets a response, the
Lambda function updates the message with the
provided session information.

5 . As noted in step 4, the AWS Lambda function
consults Amazon GameLift for a game server
assignment.

6 . Amazon GameLift reserves a game server and
session for matched players.

7 . After initial join request and player code starts
periodically checking whether the match
is ready. When it’s ready, the player directly
connects to the game server via the provided
game server information such as IP, port, and
custom player session ID.

All of these services provide pay-as-you-go
pricing on AWS Marketplace, with no upfront
costs or long-term commitment pricing. For
customers who wish to leverage their AWS EDP,
Redis Cloud annual commitments are also
available through the AWS Marketplace. The
gaming companies enjoy Redis Enterprise on
unified AWS billing and can consume credits
towards their AWS contractual commit.

1313

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

https://aws.amazon.com/marketplace/pp/prodview-mwscixe4ujhkq?sr=0-1&ref_=beagle&applicationId=AWSMPContessa

Modern games have unique challenges, such as
usage spikes when millions of players concurrently
play and interact. In fact, gaming software company
Unity has reported that 96% of multiplayer game
developers believe scalability is critical to the
success of a game. The popular game “Fortnite”
has more than 350 million registered players, and
it has been reported that on average 3 to 4 million
people play the game, with spikes of up to 8 million
concurrent players at certain times.

User acquisition costs are high, so it behooves
gaming companies to do everything possible to
keep players on the platform for as long as possible.
This requires that games have to be engaging and
fun whenever players join.

Accurate, compatible, and ultra-fast matchmaking
is critical to player engagement and to any online
video game’s success. Game developers know
this well, so they use the best tools to suit their
needs, which is why Redis is so popular among
game developers. The ability to handle a variety
of data models at very high speeds for efficient
matchmaking is what sets Redis Enterprise apart,
and hosting on AWS easily and automatically
prepares the game for unknown demand.

Etermax maximizes throughput
for its game servers

With more than 10 million players for its
Trivia Crack game, Etermax turned to Redis
Enterprise to maximize its game servers’
availability and throughput while reducing
AWS infrastructure costs by 30%.

Read more >

MyTeam11 builds a low latency
fantasy sports platform

MyTeam11’s fantasy sports gaming platform
has more than 15 million users. Using Redis
Enterprise, the company easily handles
traffic p aks when users set their fantasy
sports rosters during the critical times when
starting lineups are announced.

Read more >

Game on

Game economics are
changing . They are no
longer single-player,
offline puzzles . Most
gaming companies are
transitioning to a “games
as a service” model, using
a monthly subscription
fee or microtransactions
with in-game currency that
creates stickiness
for gamers .

1414

© 2022 RedisRedis E-Book / The Game Developer’s Guide to Matchmaking

https://create.unity.com/2021-game-report
https://fictionhorizon.com/how-many-people-play-fortnite-user-growth-stats/
https://redis.com/customers/etermax/
https://redis.com/customers/myteam11/
https://www.visualcapitalist.com/50-years-gaming-history-revenue-stream/
https://www.gpbullhound.com/insights/social-gaming/
https://www.gpbullhound.com/insights/social-gaming/
https://www.gpbullhound.com/insights/social-gaming/

Next steps • Build better games with real-time data
• Level up your Gametech with a Real-Time Database
• Pizza-Tribes - a demo game
• Fully managed Redis Cloud on AWS
• AWS for Games

Why wait? Get started now with Redis Enterprise on AWS Marketplace.

Learn more about
the ways that Redis
can improve gaming
software development

Data is the lifeline of every business, and Redis helps organizations reimagine how fast they can process,
analyze, make predictions, and take action on the data they generate. Redis provides a competitive edge to any
business by delivering open source and enterprise-grade data platforms to power applications that drive real-
time experiences at any scale. Developers rely on Redis to build performance, scalability, reliability, and security
into their applications.

Born in the cloud-native era, Redis uniquely enables users to unify data across multi-cloud, hybrid, and global
applications to maximize business potential. Learn how Redis can give you this edge at redis .com

About Redis

1515

© 2022 RedisRedis E-Book / 5 Things You Don’t Know About Redis

https://redis.com/solutions/industries/gaming/
https://redis.com/docs/redis-enterprise-for-gaming/
https://github.com/redis-developer/pizza-tribes
https://redis.com/cloud-partners/aws/
https://aws.amazon.com/gametech/
https://aws.amazon.com/marketplace/pp/prodview-mwscixe4ujhkq?sr=0-1&ref_=beagle&applicationId=AWSMPContessa
https://redis.io
https://redis.com/redis-enterprise-cloud/overview/
https://redis.com

	Introducing the concept of streams
	How streams are related to events
	How streams compare to buffering
	Processing using just Buffers

