
Strategic Data Flexibility
Both old-line database vendors and cloud providers push
compromised models of the data layer. Fortunately, Redis
Enterprise offers a third way—the best of both worlds.

WHITE PAPER Strategic Data Flexibility | 2

Executive summary

Picking the right database is a critical decision, with a cascade of
consequences felt across the organization and up and down the tech stack
for years and even decades. Unfortunately, database choice can be difficult
and complex, with the full impact becoming clear only when the database is
pushed at scale or beyond the initial data model.

Ironically, a limited set of options makes database choice even more
complex. The database industry is largely divided into two camps. One camp
advocates for a monolithic relational database model, while the other pushes
customers to use a variety of purpose-built databases for every application.
Think of the first camp as a hot-dog cart: they offer one thing, hot dogs. The
second camp is like a food court, you select from an array of options that may
or may not go together.

Relational databases = hot dogs
The hot dog vendors rely on a single data model (relational) and a single
kind of software (DBMS). No matter the actual type of data being stored
and queried, it has to be bent and formed to fit the relational model. The
development team must write this extra layer of software to adapt a variety
of data problems into relational/tabular problems. Operationally, this often
produces performance or scale problems as it forces the database to do
things it wasn’t truly designed to handle. No matter how many condiments
they ladle on top, these vendors are offering only hot dogs.

WHITE PAPER Strategic Data Flexibility | 2

This cart sells hot dogs. Even if
you add ketchup, mustard or even
pickles, it’s still a hot dog. Don’t let
anyone tell you otherwise.

“ “

WHITE PAPER Strategic Data Flexibility | 3

Cloud databases = food courts
The food court camp view is that many data models are required, even in a
single application, which means everyone needs to use multiple, purpose-
built databases. These databases are strung together across a network,
yielding a fragile, slow, rat’s nest of interconnected services. Developers
must learn a bewildering array of query languages, connection methods,
and client libraries. And they have to worry about synchronization issues and
failure tolerances when managing data across multiple services. Operations
teams have to deal with configuring, scaling, securing, and maintaining not
just one database platform, but several.

Both choices are compromised. They embed conflict and brittleness as well
as performance and maintainability concerns. Even more importantly, it’s a
false, forced choice. There is another path, one that can help you avoid the
rat’s nest and having to fit everything into a single data model.

Redis Enterprise = a third way
Redis Enterprise presents a third way—a single operational interface in which
you can deploy multiple databases. The databases in Redis Enterprise offer
modules that extend the key-based functionality of Redis to more-specific
data models such as graph, search, document, and time series, as well
as probabilistic, event-triggered, and AI-serving capabilities. Developers
interface with the database through standard Redis client libraries. Instead
of a hot dog cart or food court, Redis Enterprise offers a full menu of well-
crafted, well-considered options from a single restaurant.

Redis Enterprise offers a third
way that delivers the best of
both worlds.

“ “

https://redislabs.com/redis-enterprise/advantages/?utm_source=pdf-strategicdata-wp202009&utm_medium=referral

WHITE PAPER Strategic Data Flexibility | 4WHITE PAPER Strategic Data Flexibility | 4

Much old-line database software
was designed in an era where
the levels of abstraction available
today just didn’t exist.

“ “

Introduction
At the heart of most modern software is data. The database is one of the
key technology choices for technology leaders. This choice has been
informed by the development of storage itself. The earliest data storage was
physical, literally holes in cards or paper tape. Over the years, we moved into
magnetic media and eventually into solid-state storage devices. Today, the
sophistication is evolving from the physics of how bits are stored on physical
media to how the data is modeled and translated into usable information.

Yet much old-line database software was designed in an era where the levels
of abstraction available today just didn’t exist—software could be delivered
only on physical media.

There is still a massive installed base of old-line databases that even non-
legacy systems. These databases rely upon a single, monolithic, relational
model. While that model remains useful for modeling some data problems, it
represents a (now) genericized storage engine that has too often been used
and misused in the place of proper data modeling techniques.

Cloud vendors, meanwhile, are abstracting away the notion of machines
entirely, delivering purpose-built databases solely available on their service.
You “just” connect them to your application. Need a database with a
different model? “Just” spin up a new database and connect to it.

Critically, both the cloud and legacy databases include fundamental
compromises. In many cases, they result in cyclical adoption of different
technology approaches in repeated attempts to ease the pain of one set of
constituents that end up coming at the expense of other constituents.

To be clear: compromises in your database strategy can lead to internal
problems (staff satisfaction and accomplishment, project longevity) and
external problems (performance and stability). Thankfully, the third option
offers a middle way that avoids the pitfalls of legacy databases and the cloud
vendors. A strategic option flexible enough to adapt to new data models
natively and to allow for operational simplicity and stability.

WHITE PAPER Strategic Data Flexibility | 5

Database industry
positions
Given the two competing approaches to database design, it’s not surprising
that much of the database industry falls into two camps: old-line database
providers and cloud vendors. Each camp sees the landscape very differently
and advocates for very different solutions.

Old-line database providers
Early on in computing, people started thinking about how to store data in
a standardized format. Charles W. Bachman had created the Integrated
Data Store at General Electric by 1963, representing the first thing we might
recognize today as a database. A few years later, in 1970, Edgar Codd wrote
“A Relational Model of Data for Large Shared Data Banks,” which functioned
as the blueprint for the relational database model. Larry Ellison took the
ideas from this paper as the foundation for what would become the Oracle
database, released in 1979.

The relational model proved to be very flexible (for the time) and eventually
became the de facto database standard. The relational model and
database became functionally equivalent in most conversations. Indeed,
this powerful model lets you accomplish many different things with a
single interface. No matter if you had a simple project for a few users or
a complex organization-wide data project, the relational model was the
answer. Of course, countless watts of energy were wasted as massive
relational databases were launched and maintained only to never do any
operation more complex than look up items by a primary key in a single
table. The intention wasn’t to be wasteful, but for decades, relational
databases were the only viable, well-known, and well-understood option,
so they got dragged into service for just about everything.

Data modeled in completely different ways was jammed into the relational
database as well, creating modeling headaches. Mapping graph data onto

“ Countless watts of energy were
wasted as massive relational
databases were launched and
maintained only to never do any
operation more complex than
look up items by a primary key
in a single table.

“

https://amturing.acm.org/award_winners/bachman_1896680.cfm
https://amturing.acm.org/award_winners/bachman_1896680.cfm
https://archive.org/details/databaserelation00date
https://docs.oracle.com/cd/E11882_01/server.112/e40540/intro.htm#CNCPT88784
https://docs.oracle.com/cd/E11882_01/server.112/e40540/intro.htm#CNCPT88784

WHITE PAPER Strategic Data Flexibility | 6

a relational database, for example, creates indexing issues and massive
performance problems. Likewise, time-series data is a write-optimized,
aggregation-heavy workload that many relational databases simply could
not handle in real-time.

Document storage in a relational database attempts to shove these
kinds of free-form, schema-free data into a highly typed and structured
tabular format. All of these data models are completely legitimate, but the
ubiquity of relational databases tended to push the complexity and model
adaption up into the application. Often, the result was a relational database
containing data that could be accessed only by a specific application, and
an overburdened database fighting to keep up with a usage pattern it was
never designed to handle.

Again, this is not to say that the relational model is completely inappropriate.
Like any data model, there are problems for which relational databases
are the optimal choice. Applications that have highly relational data and/
or cannot be effectively denormalized are still great fits for these kinds of
databases. But just as when all you have is a hammer everything looks like a
nail, if all you have is a relational database all problems appear relational.

To be fair, settling on a single database platform does allow for some
operational benefits. The professionals running these platforms learned
quickly and deeply how to keep them stable. As large, complex pieces of
software, relational database systems could be run on an organizational
level rather than be deployed specifically for an individual piece of software,
centralizing complexity and expertise. While the one-size-fits-all approach
has the potential to cause development problems, it also created a single,
known vector to operationalize.

Architecturally, though, the roots for these systems date from an era prior
to the birth of many people who are operating them—before the modern
internet, much less cloud computing. Granted, there is little, if any, source
code that originates from the late 1970s still running in this class of software,
but the underlying concepts were born in a fundamentally different age.

Enter the cloud
When companies started to move software to the cloud, many tried to
do so without rearchitecting their applications (known as “lift-and-shift”).
Unfortunately, assumptions made at the architectural level for many pieces
of software did not match the drastically different cloud environment—and
RDBMSes were no exception. Decades of low-level and micro optimizations
had produced software that ran with acceptable performance in on-
premises environments. But when placed into a virtualized environment,
new challenges emerged; lower performance off server network attached
storage, ephemeral compute resources, and lack of automation created a
rocky path to the cloud. In short, the early lift-and-shift exercises proved that
operational professionals not only need to be experts on massive database
software but also on the cloud they’re using. The world had changed.

WHITE PAPER Strategic Data Flexibility | 7

Cloud shadows:
Relational databases
remain popular… for now

Cloud vendors
On the other end of the spectrum sit the cloud vendors. Based on their
product lines, the cloud vendors seem to reject the idea that the relational
model is the standard way to store and retrieve data. The various data
models represented in the cloud vendors’ database products suggest that
your application’s data should not bend for the available database, but
instead you should select the right database(s) for your application.

The cloud vendors can be seen as supporting NoSQL, a term coined as
early as 1998, but with a contemporary meaning dating from 2009. NoSQL
databases originally focused on providing a single data model to support
a shorter list of use cases. They are purpose built for a single data model.
However, any application of sufficient complexity probably has a wide range
of data that should be modeled in different ways, so a single application
can require multiple different databases. Indeed, where old-line database
providers sought to provide a database to an organization, cloud vendors
may seek to supply many databases to a single application.

Multiple databases in a single project can help solve developers’ problems.
Relational databases create results that require developers to rely on libraries
or their own code to marshal and unmarshal data to fit the relational model
(the object-relational impedance mismatch problem). The inputs and outputs
of NoSQL databases tend to resemble how the application code models
data internally. So, as a developer working with purpose-built databases,
the proportion of time allotted to writing relevant, problem-solving code
is greater compared to relational databases where there is a hidden
requirement to massage the data into a usable form.

“ Old-line database providers
sought to provide a database
to an organization, while
cloud vendors seek to supply
many databases to a single
application.

“

Top 3 Relational Databases DB-Engines Scores,
Quarterly 2013-2019

The modern era of cloud computing has affected the popularity of old-line databases. While
relational databases hold the top three positions in DB-Engines.com rankings, their trend
over time is clearly downward. Since DB-Engines started tracking the scores in 2013, there
has been an overall decline in the popularity of the top relational models, according to the
DB-Engines scoring methodology.

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://db-engines.com/en/ranking_definition

WHITE PAPER Strategic Data Flexibility | 8

But using multiple purpose-built databases in a single application comes
with its own downsides. Like any tool, there is skill and techniques of
use involved; each database requires developers to learn not only the
conceptual basis of the database and model, but also the accompanying
libraries. For example, understanding the connection parameters for
databases is often a non-trivial task that if not managed properly can cause
performance or stability issues.

Despite being cloud-based, multiple databases also present operational
challenges. One such challenge is related to managing a large number of
cloud services in your organization. With each application being served by
many databases, your operations teams have to deal with more different
pieces of software. Cloud services are easier to maintain than on-premises
services, but the operational maintenance remains variable and non-zero.
For example, some databases do seamless upgrades while others require
intervention. Some databases need specific configuration for your context,
while others can run perfectly on defaults.

Latency and scaling
In addition to the overall complexity impact of having multiple databases
per application, latency is also impacted. In addition, it can be hard to get
a handle on overall latency in a complex system. If a single operation of an
application has to touch multiple databases, then the cumulative latency
of all the databases and the application will affect the application’s overall
performance. Whereas a single database platform can perform many
operations in a single request, in the cloud, each operation could be on a
separate database that adds its own round-trip latency to the application
and back. Indeed, synchronous operations may require many round-trip
network hops (compounding latency) while others may be able to be
parallelized, so all network hops occur at the same time (in this case, overall
latency would be the highest latency of the group).

Scaling is another consideration. Each database supporting the application
may scale differently, yet the application will perform only as well as its
weakest link. Even with optimized infrastructure for each database, the
operational strategy is complex, as performance hits plateaus on one
database or another as you scale.

“ Each database requires
developers to learn not only
the conceptual basis of the
database and model, but also
the accompanying libraries.

“

WHITE PAPER Strategic Data Flexibility | 8

WHITE PAPER Strategic Data Flexibility | 9

Beware the short blanket

The complexity of the application is operational in connecting to and maintaining multiple,
purpose-built databases as advocated by cloud vendors.

Business logic Business logicBusiness logicBusiness logic

Dev team responsibility

Operational responsibility

The complexity stays on the side of the development team as they have to map
relational data to reflect the true model of the application (business logic).

Operational responsibility
Dev team responsibility

Complexity

Libraries, marshalling Business logic

Complexity

Libraries, marshallingRelational database Business logic

Complexity

Libraries, marshalling Business logic

Think about trying to make a bed with a blanket that is not long enough to
cover the mattress. Tucking the blanket into the foot of the bed leaves the head
exposed. Lining it up at the head leaves the foot exposed. Laying the blanket in
the middle exposes both the head and the foot. All the options are inadequate.

Similarly, the old-line database providers give unified organizational
deployment and scaling, but their ill-fitting models must be remedied by
additional developmental complexity (see lower left). Cloud vendors provide an
array of purpose-built database types, which unfortunately breeds operational
complexity in having to connect, scale, and run multiple databases per
application (see lower right).

Ultimately, both approaches are inadequate. Moving the complexity to
development or operational teams does not reduce the overall complexity. The
massive engineering effort required to move an application from a single data
model in an old-line database to many purpose-built databases in the cloud
could actually be a waste of time if it doesn’t actually reduce complexity but
merely reassigns the complexity to a different team.

Even worse, migrating an application to the cloud can usher in an endless cycle
of refactoring. For example, consider an application that is running well and
stable on a variety of data models, but is shoehorned in a relational database.
While the application may run well, its underlying code is lengthy and hard to

maintain—much of it does not
address business logic, but rather
object-relational impedance mismatch
problems. The weight of the code makes it
difficult to add new features and fixes.

To solve this problem, the development team sees, say, a graph database, a
time-series database, and a search database that would eliminate the need
for large parts of the existing codebase. Switching to these purpose-built
databases seems reasonable. Re-engineering occurs and the next release of
the application is written to talk to these three new databases.

The development team quickly iterates on new features... but the production
environment is now slow and unstable. The operations team sees issues with
uptime and struggles to deal with troubleshooting multiple new databases.
It becomes difficult to diagnose the exact problem as the cloud-provided
solutions are black boxes that supply limited visibility into the problematic
databases. The operations team starts to advocate moving to another
database strategy (most likely back to a relational database) that is more
stable and performant. The cycle of pain and expense begins again as you
move the blanket around on a bed it simply doesn’t fit.

WHITE PAPER Strategic Data Flexibility | 10

Strategic flexibility with
Redis Enterprise
So far, this document has addressed only two options, inadequate as they
might be. Both the RDBMS-for-everything and the multiple-database-
models-in-the-cloud approaches work only on a tactical level, solving
one problem in a regimented manner, shifting difficulties around the
organization, and ultimately setting up the organization for cyclical,
expensive re-engineering projects.

A more strategic option is to find a path that incorporates the best of both
worlds. A path that allows multiple, native data models to co-exist yet scale
predictably. A path that lets developers use one library and connect to one
endpoint, and have access to multiple models. This strategic, flexible path
exists—and it leads to Redis Enterprise.

Redis Enterprise is a database platform built around a core of Redis. Redis,
without any extensions, provides a key-value data access model with the
addition of data structures like Hash maps, Lists, Sorted Sets, streams, and
more. Redis can be extended with modules that introduce entirely new
functionality to the database. These modules implement native data models
such as graph, full-text search, document storage, and time series, as well
as additional functionality around artificial intelligence and event-driven
scripting.

The advantages of the Redis Enterprise approach boils down to three
key factors:

1. One operational interface, with multiple data models
2. A simple, unified interface
3. Cloud-born and bred

The strategic option is to find
a path that incorporates the
best of both worlds. A path
that allows multiple, native
data models to co-exist yet
scale predictably.

“

“

WHITE PAPER Strategic Data Flexibility | 11

One operational interface, with multiple data models
Redis Enterprise provides the best of both worlds—it offers a single
operational interface where many data models can coexist on a single data
plane. Redis Enterprise was developed out of the need for enterprise-scale
users to operationalize their Redis instances. The Redis ecosystem evolved
a robust, pluggable module system that hooks deeply into the heart of
Redis, allowing Redis to move beyond the built-in key/value model and host
other data models. This multi-model approach lets it inherit the operational
characteristics of Redis while adding powerful new capabilities. As you scale,
you need only add more infrastructure to Redis Enterprise.

Enabling a module in Redis Enterprise is as simple as clicking a button in
a UI, but it drastically changes how data is stored and queried. Redis has
produced a number of modules that enable a number of different data
models, including:

 Search and Query
 Full-text search and secondary indexing

 JSON
 JSON document store

 Time Series
 Record data samples in high volumes and aggregate and
 downsample on the fly

Modules are optional, you can turn on only the ones you need for a specific
project. Redis Enterprise is multi-tenant, so you can create databases for
individual needs with specific modules or you can create databases with
many modules working in concert, allowing you to zoom in on the specific
capabilities you need for your application.

These modules, alongside Redis’ built-in key-value data structure, enable a
wide range of uses. It’s important to understand that these modules are not
capabilities built on top of the key-value model, but rather models that are
accessing the internals of Redis to store data in memory and persist it to
disk. Many of these models can be enabled on the same database, so it is
possible, for example, to use full-text search over graph nodes or store JSON

“ Redis Enterprise provides
the best of both worlds—it
offers a single operational
interface where many data
models can coexist on a
single data plane.

“
Business logic Business logic Business logic Business logic

Dev team responsibility

Operational responsibility

Redis Enterprise enables an elegant separation of development and operational
concerns without compromising on flexibility of the data model.

https://redislabs.com/modules/redis-search/?utm_source=pdf-strategicdata-wp202009&utm_medium=referral
https://redislabs.com/modules/redis-json/?utm_source=pdf-strategicdata-wp202009&utm_medium=referral
https://redislabs.com/modules/redis-timeseries/?utm_source=pdf-strategicdata-wp202009&utm_medium=referral

WHITE PAPER Strategic Data Flexibility | 12

documents alongside time-series data. Because the different data models
exist on the same data plane, even transactions are possible between models.

A simplified, unified interface
Because one Redis database can serve multiple models from the same
data plane, it becomes a single point of connection. All of the connection
properties are reduced into one and there are no performance penalties or
extra latency for using multiple, native data models. Additionally, developers
need to understand only one programmatic interface for all the different
data models—it all boils down into the Redis protocol. In effect, you gain the
benefits of using separate databases in one operational package.

Cloud-born and bred
Redis has always been a solution for the cloud. Redis Enterprise extends
this with an overall package that is aware of the cloud environment with
features like zone and rack awareness, monitoring, and bifurcated data and
administrative planes.

Since Redis uses system memory for primary data storage, it creates an
operational dynamic well suited to running on any cloud or multiple clouds.
Redis Enterprise also supports Redis on Flash, which enables SSD-based
storage on cloud instances to act as an extension to DRAM, enabling
high performance of very large datasets on the same infrastructure at an
affordable cost. As an in-memory database, Redis is ready for the next
generations of data storage as the industry evolves from spinning disks and
block-based Flash storage to byte-addressable durable storage.

Significantly, Redis Enterprise is cloud agnostic. Redis is not a cloud vendor,
so you can choose the cloud that works best for your organization and
applications. This mitigates cloud lock-in and enables hybrid cloud and multi-
cloud deployments. Additionally, Redis provides a variety of deployment
methods: choices range from a fully managed cloud environment to licensed
on-premises deployments.

Redis Enterprise is cloud agnostic.
Redis is not a cloud vendor, so
you can choose the cloud and
deployment options—in the
cloud or on-premises—that work
best for your organization and
applications.

“

“

WHITE PAPER Strategic Data Flexibility | 13

Redis Enterprise:
a strategic solution
Solving a single problem is often relatively uncomplicated. Making choices
that solve multiple problems is typically more challenging. Add in the need
to solve multiple current problems while also addressing multiple problems
for the future, and things can get extremely complex. This is the heart of
strategic problem solving. Database choices are sometimes made lightly,
other times they’re predetermined before a project even commences. Either
way, that is not a strategic choice.

Redis Enterprise provides a new path that can strategically solve both
development and operational problems for not just today, but also for the
foreseeable future. It soothes the pain of data models in development as well
as performance and stability in operations at the same time, helping ensure
a decision that will stand the test of time.

Freedom to bring your own data model
Applications built with Redis Enterprise work better because
they store data the way your application uses it. Redis Enterprise
supports a variety of built-in, rich data models that can be used
to match the task at hand. As complete implementations, Redis
Enterprise doesn’t try to shove data into inappropriate data
metaphors, which helps you reduce application-level code and
complexity. Reducing your application-level code and complexity
results in more-productive developers focused on your business
problems, not trying to cram data into an inappropriate data model.

Built-in operational flexibility
Since Redis Enterprise enables many data models to coexist
within the same cluster or even the same data space, it eliminates
connections between different, independent databases.

Redis Enterprise provides a
new path that can strategically
solve both development and
operational problems for not
just today, but also for the
foreseeable future.

“

“

WHITE PAPER Strategic Data Flexibility | 14

Consolidating multiple models under one connection reduces the
brittleness and instability brought on by multiple connections.
In Redis Enterprise, you can even run transactions between
data models, something just not possible with a collection of
independent databases.

No cloud lock-in
Because it doesn’t come from a cloud vendor, Redis Enterprise isn’t
locked to a specific cloud—you can take your data to an entirely new
cloud should the need arise, or even deploy in a hybrid or multi-
cloud configuration. You have full control over the infrastructure
running Redis Enterprise, you can easily add more infrastructure
to support a cluster. Inside the cluster, you can create isolated or
combined databases that have purpose-built data models.

Infrastructure flexibility
The total cost of ownership of a database should take into account
not just the price per time unit, but also the organizational impact.
The solution you pick should be flexible enough to natively support
more than a single data model, optimizing and future-proofing
the data layer against unanticipated shifts and changes. Redis
Enterprise simplifies data-layer challenges by giving developers
and architects freedom and flexibility to build applications that
deliver performance without sacrificing operational efficiency. This
balance advances the interests of both those writing software and
those charged with running it, minimizing undue burden on any part
of the organization.

Both the old-line database vendors and the cloud providers possess
soapboxes from which they loudly proclaim that they have the true pathway
and that the other is completely wrong. Both sides have reasonable critiques
of data-modeling weaknesses and operational complexity against one
another. Thankfully, the choice is not binary: you have options outside
this false dichotomy. You can learn more about the advantages of Redis
Enterprise at redis.com/modules.

Database TCO should take
into account not just the price
per time unit, but also the
organizational impact. Your
database should be flexible
enough to natively support
more than a single data
model, optimizing and future-
proofing the data layer.

“

“

https://redis.com/redis-enterprise/modules/?utm_source=pdf-strategicdata-wp202009&utm_medium=referral

WHITE PAPER Strategic Data Flexibility | 15

About Redis
Modern businesses depend on the power of real-time data. With Redis, organizations
deliver instant experiences in a highly reliable and scalable manner.

Redis is the world’s most popular in-memory database, and commercial provider of Redis
Enterprise, which delivers superior performance, matchless reliability, and unparalleled
flexibility for personalization, machine learning, IoT, search, e-commerce, social, and
metering solutions worldwide.

Redis, consistently ranked as a leader in top analyst reports on NoSQL,
in-memory databases, operational databases, and database-as-a-service (DBaaS), is
trusted by more than 7,400 enterprise customers, including five Fortune 10 companies,
three of the four credit card issuers, three of the top five communication companies,
three of the top five healthcare companies, six of the top eight technology companies,
and four of the top seven retailers.

Redis Enterprise, available as a service in public and private clouds, as downloadable
software, in containers, and for hybrid cloud/on-premises deployments, powers popular
Redis use cases such as high-speed transactions, job and queue management, user
session stores, real time data ingest, notifications, content caching, and time-series data.

Follow us:

redis.com

©2020 Redis

https://www.instagram.com/redislabsofficial/?hl=en
https://www.youtube.com/channel/UCD78lHSwYqMlyetR0_P4Vig
https://www.facebook.com/RedisLabs/
https://www.linkedin.com/company/redis-labs-inc
https://twitter.com/RedisLabs
http://redis.com/?utm_source=pdf-strategicdata-wp202009&utm_medium=referral

